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Numerical identification of flow-induced oscillation modes
in rectangular cavities using large eddy simulation
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SUMMARY

Self-sustained oscillations are present in a wide variety of flows. For flows passing cavities, acoustics
can play a role in the physical mechanisms triggering and maintaining the oscillation phenomena. This
is the case for the flow over rectangular cavities, which is studied in this paper. The compressible LES
Navier–Stokes equations are solved for cavities with an upstream laminar boundary layer. The flow
passing rectangular cavities is computed, varying two different parameters related to the physics of the
problem, Mach number and length of the cavity divided by the momentum thickness of the boundary layer
at the leading edge. This paper intends to prove that the switch between shear-layer oscillation mode,
characterized by an acoustic feedback process, and wake oscillation mode, characterized by a large-scale
vortex shedding with Strouhal number independent of Mach number, can be identified using large eddy
simulation, and consequently, with much less computational effort than in other studies in literature, where
direct numerical simulation has been applied. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The phenomenon of flows passing over a cavity has been studied in numerous investigations in
the past and has a broad range of applications. These include, but are not limited to, automotive
industry, gas transport systems, aircraft wheel and weapon bays and aerospace applications. The
noise spectrum of cavity noise contains both broadband components, introduced by the turbulence
in the shear layer, and tonal components. The latter can be induced by two mechanisms: a wake
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mode mechanism, due to a periodical vortex shedding at the cavity leading edge, and a shear-layer
mode mechanism, due to a feedback coupling between the flow field and the acoustic field.

Rossiter [1] was one of the first researchers who described the feedback mechanism based on
shadowgraphic observations on a number of different rectangular cavities. Based on experimental
results, Rossiter derived the following semi-empirical formula for the dimensionless frequencies
(Strouhal number, St) of this periodic phenomenon:

St = f L

U∞
= n − �

M + 1/k
(1)

with f the frequency, L the length of the cavity, U∞ the free-stream velocity, n the mode number,
M =U∞/c0 the undisturbed Mach number, c0 the speed of sound, k =Uconv/U∞ the ratio of the
convection velocity of the vortices Uconv to the free-stream velocity U∞ and � a factor to account
for the lag time between the passage of a vortex and the emission of a sound pulse at the trailing
edge of the cavity.

Yet another mode of oscillation has been observed. In incompressible experiments, Gharib
and Roshko [2] observed that when the length to depth ratio of the cavity was increased, the flow
becomes more violent and unsteady. A big vortex that fills the whole cavity is formed at the leading
edge and is ejected out of the cavity at the trailing edge when it is big enough. The flow above the
cavity is, in this case, affected by the flow inside the cavity and freestream fluid is periodically
going in and out of the cavity. Gharib and Roshko used the term wake mode to describe this flow
regime, since the flow over the cavity looks like the wake behind a bluff body. Flow features of
this mode are qualitatively very different from shear-layer mode. Numerical studies [3] show that,
in wake mode, the frequencies of oscillation are independent of Mach number, suggesting the
absence of a flow-acoustic coupling.

Experimental cavity flow research is dominated by the study of near-field flow features and
cavity-wall pressure fluctuations. Several reviews of these experimental results are given in
literature [4–7].

From the computational point of view, many studies about cavity flow exist in the literature.
Recently, shear-layer and wake modes, have been numerically investigated by several authors
using 2D direct numerical simulation [3, 8, 9], in the frame of aeroacoustic research. In these
cases, the computational domain includes the propagation region of acoustic waves generated at
the cavity. However, the different modes of oscillation can have implications in several aspects
other than a different noise generation pattern. Indeed, different oscillation modes mean also
different cavity drags, different boundary layer behaviours and different pressure coefficients in
the walls of the cavity. In these cases, the computational domain can be smaller, and the number
of turbulent scales that are resolved can be reduced, decreasing the computational cost. Also,
when aeroacoustics hybrid techniques [10], where the source region and the propagation region
are computed separately, are applied, the computational effort needed to compute the source region
can be dramatically decreased in the same two ways stated above. First, the computational domain
where the Navier–Stokes equations are solved, is reduced to the region where acoustic waves are
generated. Given the small size of the domain, special care has to be taken at the boundaries by
using non-reflecting boundary treatments and buffer zones. Second, in this work the main interest
is to capture the right frequencies for aeroacoustic tonal noise sources, that are given by the big,
energy containing eddies. Because of this, and even if turbulence is a 3D phenomenon, there is
no need to accurately resolve turbulence up to the smallest scales, and hence, the use of 2D LES
is justified, as well as a relatively simple subgrid scale model, provided that it does not affect the

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:851–866
DOI: 10.1002/fld



NUMERICAL IDENTIFICATION OF FLOW-INDUCED OSCILLATION MODES 853

correct resolution of the big scales. These LES computations carried out in a smaller domain, are
in time and resources, much less demanding than the DNS computations usually performed in
direct numerical aeroacoustics (the DNS computations that are going to be used for comparison
in this paper are also 2D [3]), and the results can be easily coupled to propagation codes, or can
be used to define sources that can predict the sound pressure levels at different points in the far
field using integral methods. In any of these cases, hybrid aeroacoustics techniques or looking at
flow features other than noise, the cost of a direct numerical simulation is not justified.

In this paper, different oscillation regimes and transition parameters are identified using large
eddy simulation. To test the ability of this methodology to extract useful acoustic information from
the source region, and to distinguish between an oscillation mode where flow-acoustic interaction
is happening (shear-layer mode), and another one where the oscillation frequency is fixed and
independent of Mach number, and hence, of compressibility or acoustic effects (wake mode), two
series of computations have been done, varying two critical parameters in the transition between
shear-layer mode and wake mode.

This paper is structured as follows. In the next section, the numerical method is described and
some details about the implementation are given. The test case and the parameters of the different
computations are also introduced here. In Section 3 numerical results are presented and the features
of the different oscillation modes are commented. The frequencies obtained are compared with
DNS results. Finally in Section 4 conclusions are drawn.

2. NUMERICAL METHOD

2.1. Filtered compressible Navier–Stokes equations

The 2D compressible large eddy simulation equations for a viscous flow are obtained from
a decomposition of the variables of the Navier–Stokes equations (�, ui ) into a Favre-filtered part
(�, ũi ) and an unresolved part (�′, u′

i ) that has to be modelled with a subgrid scale model:

��

�t
+ �� ũi

�xi
= 0 (2)

�� ũi
�t

+ �� ũi ũ j

�x j
=− � p

�xi
+ �( �̃i j + �i j,SGS)

�x j
(3)

�� ẽ

�t
+ �� ẽ ũi

�xi
=−�ũi p

�xi
+ � ũi ( �̃i j + �i j,SGS)

�x j
− �( q̃i + qi,SGS)

�xi
(4)

In Equations (2)–(4), �, ũi and p are the resolved density, velocity components and pressure.
For a perfect gas, the total energy per mass unit ẽ is defined as

ẽ= p

(� − 1)�
+ ( ũi ũi )

2
(5)

and � is the ratio of specific heats. The viscous stress tensor �̃i j is modelled as a Newtonian fluid,
and the heat flux q̃i is modelled with Fourier’s law. Dynamic molecular viscosity and molecular
conductivity are kept constant.
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The subgrid scale stress tensor �i j,SGS, and the subgrid scale heat flux qi,SGS, reproduce the
dissipative effects of the unresolved scales by using a turbulent viscosity �t , and a turbulent Prandtl
number Prt . These are then modelled as

�i j,SGS = 2�t S̃i j (6)

and

qi,SGS = − �t cp
Prt

�T̃
�xi

(7)

with T̃ the temperature and

S̃i j = 1

2

(
�ũi
�x j

+ �ũ j

�xi

)
(8)

For the turbulent Prandtl number, a constant value of 0.5 has been chosen based on the dynamic
computations of several authors. Lessani [11] found that in a channel flow LES computation using
the dynamic Smagorinsky model, Prt stabilizes at a value of approximately 0.5 for y+ larger than
10, and he recommends, for computations using the Smagorinsky model with constant coefficients,
to use values between 0.5 and 1. The same results in a channel flow computation are reported by
Moin et al. [12]. In the same reference it is also shown that, in several numerical experiments
carried out in order to test the performance of the dynamic model for compressible isotropic
turbulence decay, the turbulent Prandtl number takes values in between 0.4 and 0.8.

To determine the turbulent viscosity, a Smagorinsky model is used, where

�t = �(Cs�)2
√
2S̃i j S̃i j (9)

The filter size � is locally set to the mesh size.
To take into account the scale reduction that occurs near walls, the filter size � is weighted with

the normal wall coordinate y+ in the way proposed by Van Driest [13]:
�′ = �(1 − exp(−y+/A)) (10)

This is a quite primitive way to deal with near-wall flow. However, this choice is made because
it is a simple and low computational cost way of resolving the flow, provided y+ ≈ 1 in the first
node off the wall. Also, since the incoming boundary layers, whose correct representation at the
leading edge of the cavity is crucial in order to capture the right oscillation mode, are laminar, the
use of more sophisticated approaches like the WALE model [14] or dynamic procedures [15], in
order to find a more correct representation of the Reynolds shear stresses near the wall, are not
justified.

2.2. Numerical implementation

The filtered compressible Navier–Stokes equations are implemented in a finite volume code. They
are integrated in time using a fourth-order explicit Runge–Kutta scheme. Convective and viscous
terms are discretized using central second-order schemes. On all solid walls, isothermal, no-slip and
no-penetration conditions are imposed, with �p/�n = 0, n being the direction normal to the wall.
At the upstream boundary, characteristic soft inflow conditions, proposed by Kim and Lee [16],
are applied. At the outlet, the subsonic characteristic outflow condition of Poinsot and Lele [17],
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together with progressive mesh stretching and a sponge zone to dissipate vortical structures [18]
is implemented. In this sponge zone, terms of the form

−c0�(x)

�x
(U − Utarget) (11)

are added to the right-hand side of Equations (2)–(4) (with U the vector of conservative dependent
variables). The damping factor, �(x), varies smoothly from zero at the edge of the buffer to a
constant value at the outlet following the expression:

�(x)= �max

(
x − x0

xmax − x0

)�

(12)

where x0 and xmax are the origin and the end of the sponge zone and �max and � are tuning
coefficients which values depend on the number of cells in the sponge region. The top boundary
of the domain can be assumed to be far enough from the region where the flow is perturbed by the
cavity. A free boundary condition is implemented with the derivatives of all primitive variables in
the direction normal to this boundary imposed to be zero.

2.3. Numerical setup

Figure 1 shows a sketch of the computational domain and indicates several system parameters,
which have been varied in 10 different cases listed in Table I.

Two main series have been computed. A similar notation is used as in the study of Rowley [3]. In
the ‘L’ series computations, the depth of the cavity is kept constant, and the parameters L/D and
L/�0, with �0 the momentum thickness of the boundary layer at the upstream edge for the initial
condition, are varied. In the ‘4M’ series, Mach number is varied keeping all the other parameters
constant. The Reynolds number based on the cavity depth (ReD) is 1500 in all cases. A structured
multi-block mesh, consisting of two blocks, is used for the computations. The first block takes the
part of the domain outside the cavity and the second one the cavity itself. This mesh is stretched
in the shear layer region and towards the walls. Figure 2 shows a detail of the mesh around the
leading edge. Note that cases L4 and 4M6 are the same. All cases were computed with Cs = 0.1,
since this is a value that is typically used for wall-bounded flows [19], except 4M5u that was

Figure 1. Cavity configuration and computational domain.
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Table I. Parameters of the different computations.

Run L/D M L/�0 Mesh Mode

L2 2 0.6 52.8 600× 130 100× 50 Shear
L3 3 0.6 75.0 650× 130 150× 50 Mixed
L4 4 0.6 102.0 700× 130 200× 50 Wake

4M2 4 0.2 102.0 700× 130 200× 50 Shear
4M3 4 0.3 102.0 700× 130 200× 50 Mixed
4M4 4 0.4 102.0 700× 130 200× 50 Mixed
4M5 4 0.5 102.0 700× 130 200× 50 Wake
4M5u 4 0.5 102.0 700× 130 200× 50 Wake
4M6(L4) 4 0.6 102.0 700× 130 200× 50 Wake

Figure 2. Mesh detail around the leading edge.

run with Cs = 0 (unresolved DNS). The computations are started from a laminar flat-plate Blasius
boundary layer spanning the cavity, and are run until statistically steady state is reached.

3. NUMERICAL RESULTS

In this section the results of the computations are presented, and it is shown that 2D large eddy
simulation in a reduced domain, is suitable for identification of different oscillation regimes and
to extract tonal acoustic information.

3.1. Mesh size

Taking the cavity depth, D, as the characteristic length of the bigger scales, the Kolmogorov length
scale can be estimated as

D

l�
∼ D

	3/4
−1/4
∼ D

	3/4(u3/D)−1/4
∼ Re3/4D
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The mesh that is used in the present study is approximately of size � ∼ 8l�. For DNS, the mesh
size has to be ��2l�. The mesh used is quite close to that limit, but still belongs to the LES range
(challenging LES is done when � ∼ 20l� or bigger), hence the subgrid scale model is used.

3.2. Shear-layer mode

The shear-layer mode is characterized by the roll-up of vorticity in the shear layer, impingement and
scattering of acoustic waves at the downstream cavity edge, upstream acoustic wave propagation,
and receptivity of the shear layer to acoustic disturbances. These features appear clearly in the
computational results. Figure 3 shows, for run L2, vorticity and pressure contours at three different
instants, corresponding, approximately, to 1

3 phase intervals of the second Rossiter mode, which
is dominant for this computation. The vorticity contours show a steady vortex occupying the rear
half of the cavity, evidencing that the interaction of the shear layer with the flow inside the cavity
is very weak for this mode of oscillation. The pressure contours allow to identify what will be the
directivity of the acoustic field propagated upstream far from the cavity. The regions in the cavity
with negative values of the pressure fluctuations, are the result of the swirling movement of the
stationary vortex.

3.3. Wake mode

As the length of the cavity, relative to the momentum thickness of the boundary layer at the leading
edge, or the Mach number are increased, there is a substantial change in the pattern of the cavity
oscillations. Under these conditions, the flow is characterized by a large-scale vortex shedding from
the cavity leading edge. The vortex reaches nearly the cavity size, dragging during his formation
irrotational free-stream fluid into the cavity. The vortex is then shed from the leading edge, and
violently ejected from the cavity. Note that in this case the boundary layer undergoes separations,
upstream during the vortex formation, and downstream, as it is convected away. These events are
clearly visible in Figure 4. In this case there are two reasons for the low pressure regions in the
cavity. One of them is, as in the shear-layer mode, the vortical swirling motion in the cavity, but
also the expansion that the flow undergoes in the first half of the cavity, as the big vortex is ejected.

In Figures 3 and 4, some discontinuities can be appreciated in the line where the two blocks of
the mesh are connected. This is due to the fact that the cell-centred approach is used in the finite
volume formulation of the CFD code. Because of this, the visualization software has to extrapolate
values of the primitive variables from the cell centres to this line, which is common for both
blocks. This is done using values above the cavity for block 1, and inside the cavity for block 2.
Because of this, two slightly different values are obtained on this line, and hence a discontinuity
appears.

3.4. Flow features

Figure 5 shows time-averaged streamlines for computations L2 (shear-layer mode) and 4M5
(wake mode). The streamlines above the cavity are clearly deflected in the wake mode, whereas
the shear-layer mode shows mean flow streamlines nearly horizontal along the mouth of the cavity.

Similar flow features can be seen in the streamwise velocity profiles in Figure 6, for cavities
4M2 (shear-layer mode) and 4M5 (wake mode). The oscillations in wake mode have a significant
impact on the mean flow outside the cavity. It is important to remark that they affect the pattern
of this mean flow even in the upstream direction. Due to this, the momentum thicknesses at the
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Figure 3. Cavity L2. Shear layer mode. On the left, vorticity field during one cycle of oscillation (Second
Rossiter mode). 15 contours of �D/U are shown between −5 and 1.67. On the right, pressure fluctuation
contours are shown at the same instants. 50 contours of (p − p∞)/�U 2∞ are shown between −0.06 and

0.06. Negative contours are dashed in both cases.

leading edge that are imposed as initial conditions are substantially different from those that are
found in the statistically converged flow. In the shear-layer mode, only the flow field in the rear
half of the cavity is significantly modified from the initial solution.

The Reynolds stresses, defined as

urms =
√〈u′2〉
U∞

, vrms =
√〈v′2〉
U∞

, uvrms =
√〈|u′v′|〉

U∞
(13)
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Figure 4. Cavity 4M6 (L4). Wake mode. On the left, vorticity field during one cycle of oscillation.
16 contours of �D/U are shown between −5 and 3. On the right, pressure fluctuation contours
are shown at the same instants. 50 contours of (p − p∞)/�U 2∞ are shown between −0.7 and 0.7.

Negative contours are dashed in both cases.
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(a) (b)

Figure 5. Time averaged streamlines for: (a) L2 (shear-layer mode); and (b) 4M5 (wake mode).

Figure 6. Statistically converged streamwise velocity profiles, 〈u〉/U∞ at different positions for runs 4M2
(shear-layer mode, solid) and 4M5 (wake mode, dashed).

Figure 7. Reynolds stresses profiles for cavity L2. From left to right urms, vrms and uvrms.

are shown in Figure 7 for the cavity L2. Note that in the profiles of urms, towards the second half
of the cavity a double peak is observed, as reported in the experiments of Ziada and Rockwell [20]
about the interaction of a mixing layer with a corner.

Sarohia [21] observed experimentally a level of fluctuations of the order of 0.15 close to the
trailing edge. For a mixing layer, typical values between 0.16 and 0.18 for urms, and between 0.12
and 0.14 for vrms are found in literature. In the reported computation L2, the maximum value of urms
is 0.092 and of vrms, 0.125. This mismatch in urms might be due to the fact that only second-order
schemes are used in these calculations. Because of this low-order, and since a clear identification
of the tones associated with the Rossiter frequencies was envisaged, conservative mesh sizes have
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Figure 8. urms, vrms and uvrms at location x = 3D from the leading edge for runs 4M5
(Cs = 0.1) and 4M5u (unresolved DNS).

Figure 9. Reynolds stresses profiles for cavity 4M5. From left to right urms, vrms and uvrms.

been used. This means that the mesh is almost the size of a DNS mesh, making the computations
very sensitive to an overdissipation of turbulent kinetic energy, even for small values of Cs . This
becomes more evident in Figure 8, where the profiles of urms, vrms and uvrms are compared for
the runs 4M5 (Cs = 0.1) and 4M5u (unresolved DNS) at location x = 3D from the leading edge.
For the three profiles, the stresses differ about 15% between the cases with Cs = 0.1 and 0. In the
opinion of the authors, this means that the rate of strain tensor that is resolved by using this mesh
is quite high and possibly the cutoff wave number is located very close to the dissipation zone of
the energy spectrum, making the computation very sensitive to an overdissipation of energy. The
results could probably be improved by using a dynamic procedure [15].

The Reynolds stresses at different x/D locations, for a cavity oscillating in wake mode (4M5)
are shown in Figure 9. These are clearly different from the ones shown in Figure 7 (shear mode).

3.5. Frequencies of oscillation

For every run, the time signals of the primitive variables have been recorded at a point in the
cavity mouth located at x = L − 0.87D (Figure 10). In the spectrum of every case, several distinct
tonal peaks and their harmonics become apparent.
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L - 0.87D

L

D

Figure 10. Location of the monitoring point.

Figure 11. Time series of the normal velocity in the cavity mouth, at x = L−0.87D, for
the runs L2, L3 and L4 (from bottom to top). The relative amplitude of the fluctuations

has been kept unmodified for comparison.

Time traces of the normal velocity at the point given above are shown in Figure 11 for the ‘L’
series, where L/�0 is varied for constant D. By comparison with the results of Rowley [3], cases
L2 and L4(4M6) can be clearly identified as shear mode and wake mode, respectively. For the
case L3 (L/�0 = 75), it appears that both modes are present at the same time, marking a transition
point.

Several runs of the series ‘4M’, where Mach number is changed, keeping all the other parameters
constant, are plotted in Figure 12. For run 4M2 there is a very small oscillation that is almost not
visible in comparison with the other cases meaning that, for this computation, since the amplitude
of the oscillations is considerably smaller than in the other cases in the ‘4M’ series, the mesh
should have been refined in the shear layer region. On the other hand, 4M6(L4) is a wake mode,
as explained in the previous paragraph. Cavities 4M3 and 4M4, seem to show both modes of
oscillation, being 4M3 closer to shear-layer mode, and 4M4 closer to wake mode. It could be said
that Mach numbers 0.3 and 0.4 mark the transition zone between shear mode and wake mode. For
4M4, Rowley predicts already full transition to wake mode. This discrepancy can be due, again, to
the fact that only second-order schemes are used, which might be not accurate enough to capture
the right features of the flow, when the combination of parameters is such that the flow is close
to the transition point between shear-layer mode and wake mode. For this reason the run 4M4 is
labelled as mixed mode in Table I.
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Figure 12. Time series of the normal velocity in the cavity mouth, at x = L − 0.87D, for the
runs 4M2, 4M3, 4M4 and 4M6 (from bottom to top). The relative amplitude of the fluctuations

has been kept unmodified for comparison.

Mach

S
t=

fL
/U

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

1
Rossiter n=1
Rossiter n=2
LES
DNS [3]

Figure 13. Strouhal numbers for peaks in spectra for the 4M series of runs, compared to
Equation (1) and to DNS results [3].

The transformation of the data to the frequency domain confirms the identification of the
oscillation mode for every cavity. In Figure 13, the frequencies of the most dominant peaks in the
spectra for the series of runs ‘4M’ are compared with the Rossiter equation (1), with �= 0.25 and
k = 0.57 and with DNS results [3].

For the case 4M4, in contrast with the others, the time signal is very noisy and it is difficult
to appreciate any periodicity. For this cavity, two very energetic peaks are found in the spectra as
can be seen in Figure 14(a). The spectrum for the case 4M3 (mixed mode) is shown in the same
picture, where the peaks corresponding to the second Rossiter mode and its higher harmonics are
clearly visible. Note that in Figures 13 and 15, the Strouhal number is based on the cavity length,
L , as defined originally by Rossiter, whereas in Figures 14 and 16, the Strouhal number is based
on cavity depth, D. For the cases 4M2 (shear-layer mode) and 4M3, the second Rossiter mode
is dominant, whereas for the cases 4M5 and 4M6(L4) the wake mode is dominant and almost
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(a) (b)

Figure 14. (a) Power spectra of v/U∞ at a point located at y = 0, x = L − 0.87D, for the runs 4M3 and
4M4; and (b) power spectra of v/U∞ at the same position for the runs 4M5 and 4M6(L4).

L/D

S
t=

fL
/U

1.5 2 2.5 3 3.5 4 4.5
0.2

0.25

0.3

0.35

0.4

0.45

Rossiter n=1
LES
DNS [3]

Mach number constant = 0.6

Figure 15. Strouhal numbers for peaks in spectra for the L series of runs, compared to
Equation (1) and to DNS results [3].

independent of Mach. No Rossiter modes are visualized in these latter cases, as can be seen in
Figure 14(b), where only the frequency of the vortex shedding and its higher harmonics are visible.
Krishnamurty [22], detected only one mode of oscillation in his experiments with upstream laminar
boundary layers, in the Mach range from 0.4 to 0.8.

Figure 15 is the same as Figure 13 but this time for the ‘L’ series. In this case, the x-axis
represents the parameter L/D. The first Rossiter mode (the only shown) is an horizontal line,
since the Mach number is constant, and the parameters � and k in Equation (1) are also kept
constant and equal to those used in Figure 13.

For the cases L2 and L3 the dominant frequency, identified from the computation, is around the
first Rossiter mode. This is the case also in the computations of Rowley [3]. In the run L4(4M6)
wake mode is identified, being the frequency of the vortex shedding, the only one present in the
spectra. Figure 16 shows the normal velocity spectra for cases L2 and L3. In the case L2, the
first Rossiter mode is over estimated, but the spectrum shows a clear dominant frequency, with
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(a) (b)

Figure 16. (a) Power spectra of v/U∞ at a point located at y = 0, x = L − 0.87D, for the run L2; and
(b) power spectra of v/U∞ at the same position for the run L3.

several harmonics of decreasing amplitude with the number of the harmonic. This means that just
one mode of oscillation (shear) is present in that cavity. In the other hand, in the case L3 the first
(dominant) peak in the spectrum is very close to the one predicted by the Rossiter formula, but
the spectrum is not as clean as in the case L2, with a first harmonic with the same amplitude as
the dominant frequency and then several other harmonics that do not show a clear tendency in
amplitude. This, together with the observation of the time signal in Figure 11, are the reasons why
this cavity is marked as oscillating in mixed mode in Table I.

4. CONCLUSIONS

This paper studies the different oscillation modes that may occur in subsonic flows passing over 2D
rectangular cavities using a second-order, large eddy simulation code. Like in the DNS simulations
from other authors, the computations have revealed three oscillation regimes, shear-layer mode,
wake mode and mixed mode. The feedback mechanism for self-sustained oscillations is different
in every mode. In shear-layer mode, acoustic scattering from the trailing edge, and receptivity
of the shear layer to acoustic disturbances at the leading edge, is responsible for oscillations at
the Rossiter frequencies. In wake mode, the feedback mechanism is no longer acoustic, since
the frequency of the oscillations is independent of Mach number. The frequencies of oscillation
show good agreement with those of other researchers using solvers with higher-order of accuracy
(sixth) and resolving much larger domains. For every considered case, the dominant mode of
oscillation is clearly predicted. Transition values between the two modes, for the parameter L/�0
and for the Mach number have been defined. In the cases where the combination of parameters is
such that the flow is in the transition region, second-order schemes seem not enough for accurate
predictions. From the quantitative point of view, it seems that the computations are quite sensible
to the subgrid scale mode. This is due to the fact that very fine meshes need to be used, to be
able to capture acoustic phenomena using low-order schemes. Also, in the opinion of the authors,
a dynamic model for the estimation of Cs would help to solve this problem. However, since in
cavity flow there are no homogeneous directions, the implementation of such a dynamic model is
not straightforward.
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